
Capacitive Sensors

Erik V Thomsen

January 16, 2022

1 Introduction

Many MEMS devices contains capacitive elements as part of either actuation or sensing
schemes. Capacitive elements are used in pressure sensors, accelerometers, moving
mirrors and many other devices. This short lecture note describes capacitive elements
based on the well known parallel plate capacitor.

This lecture note is brand new so please report any errors or good ideas for im-
provements. Some of the figures are made by Bernard Legrand as part of his lecture
”Electrostatic actuation”.

2 The parallel plate capacitor

This section summarizes well known results for parallel plate capacitors where the
dimensions of the plates are much larger than the plate distance such that fringing
fields can be ignored. The capacitance of two plates having area S separated a distance
d is

C =
εS

d
(1)

where ε is the dielectric constant of the material between the plates (often vacuum
where ε = ε0 ). The charge, Q, and the applied voltage, V , are related by

Q = CV (2)

The electric field, E, between the plates is

E =
V

d
=

Q

Cd
=

Q

εS
(3)

and the stored energy in the capacitor, Ue, is

Ue =
1

2
CV 2 (4)
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Figure 1: A capacitor with a moving plate. The initial gap is g and the spring has
spring constant k.

The force between the plates is calculated from the potential energy as

F = −
∂Ue

∂d
= −

∂

∂d

(

1

2
CV 2

)

= −
∂

∂d

(

1

2

εS

d
V 2

)

yielding

F =
1

2

εS

d2
V 2 (5)

3 Capacitive sensing

Fig. 1 shows a parallel plate capacitor where one of the plates are attached to a spring
so it can move in the z direction. This spring could be part of a mechanical element
in a MEMS device such as a plate. The capacitance is given by

C(z) =
εS

g − z
(6)

which for z = 0 gives the zero point capacitance, C0, as

C0 =
εS

g
(7)

The ratio of the capacitance to zero point capacitance is

C

C0

=
εS
g−z
εS
g

=
g

g − z
=

1

1− z
g

=
1

1− u
(8)

where the relative displacement u is given by

u =
z

g
(9)
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Figure 2: Plot of C
C0

as function of u = z/g (Eq. 8, solid line) and the Taylor expansion
(Eq. 10, dashed line).

This expression is plotted on Fig. 2. For small values of u we can make a Taylor
expansion and obtain

C

C0

=
1

1− u
≈ 1 + u (10)

which is plotted as the dashed line on Fig. 2.
The change in capacitance, ∆C, is defined as

∆C = C − C0 (11)

and the relative change in capacitance is

∆C

C0

=
C − C0

C0

=
C

C0

− 1 =
1

1− z
g

− 1 =
z

g − z
=

z
g

1− z
g

=
u

1− u
(12)

which is plotted on Fig. 3. Clearly, this type of sensor is not linear. For small values
of z we can make a Taylor expansion and obtain

∆C

C0

=
z

g − z
=

u

1− u
=

1

g
z +

1

g2
z2 +O

(

z3
)

≈ u+ u2 (13)

which is plotted as the dashed lines on Figs. 3 and 4. For small values of u a linear
response is obtained.
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Figure 3: Plot of ∆C
C0

as function of u = z/g (Eq. 12, solid line) and the Taylor
expansion (Eq. 13 dashed line).
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Figure 4: Plot of ∆C
C0

as function of u = z/g (solid line) and the Taylor expansion
(dashed line) for small values of u. Note the linear region.
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4 Pull in voltage

When a capacitive sensor is used a voltage is applied across the plates of the capacitor.
This gives an attractive force between the plates. This force will pull the two plates
together and elongate the spring. To find the equilibrium condition we will use an
energy method to find the total force on the moving plate. Equilibrium is obtained
when the total force on the moving plate is zero.

Figure 5: Plot of the spring force, Fsp, and the electrostatic force, Fel, between the
plates. At high voltages the electrostatic force is always larger the the spring force and
the moving plate is pulled down to the fixed plate. At lower voltages there is a stable
position where the electrostatic force equals the spring force.

The potential energy, U , is (using Eq. 6 for C(z))

U = −
1

2
CV 2 +

1

2
kz2 = −

1

2

εS

g − z
V 2 +

1

2
kz2 (14)

The force is obtained from the potential energy as

F = −
∂U

∂z
(15)

= −
∂

∂z

(

−
1

2

εS

g − z
V 2 +

1

2
kz2

)

= −
∂

∂z

(

−
1

2

εS

g − z
V 2

)

−
∂

∂z

(

+
1

2
kz2

)

=
1

2

εS

(g − z)2
V 2 − kz (16)
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The first term is the electrostatic force, Fel, between the plates which is proportional
to V 2 and the second term is the force, Fsp, corresponding to the spring which depends
linearly on z. These forces are sketched on Fig. 5. At high voltages the electrostatic
force is always larger than the spring force and the moving plate is pulled down to the
fixed plate. At lower voltages there is a stable position where the electrostatic force
equals the spring force, i.e. the total force is zero, and an unstable position as well.

In order to investigate the stable and unstable positions we will examine the con-
ditions for a stable equilibrium position. If the plate is moved a small distance δz and
the increase in the force, δF , is positive then the two plates will be pulled together.
We can write the change in force with displacement as

δF =
∂F

∂z

∣

∣

∣

∣

V

δz (17)

and examine the derivative by using Eq. 16

∂F

∂z

∣

∣

∣

∣

V

=
∂

∂z

(

1

2

εS

(g − z)2
V 2 − kz

)

=
∂

∂z

(

1

2

εS

(g − z)2
V 2

)

+
∂

∂z
(−kz)

=
εS

(g − z)3
V 2 − k (18)

In order for this to be negative such that a stable position is found we must have

εS

(g − z)3
V 2 − k < 0 (19)

from which we obtain
εS

(g − z)3
V 2 < k (20)

This puts a requirement on the largest voltage that we can apply to have a stable
position. This voltage is called the pull-in voltage, Vpi, and is given by

εS

(g − z)3
V 2
pi = k (21)

At the equilibrium point the electrostatic and the spring force equals each other

1

2

εS

(g − z)2
V 2
pi = kz (22)
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Combining Eqns. 21 and 22 we obtain

εS

(g − z)3
V 2
pi =

1

2

1

z

εS

(g − z)2
V 2
pi

1

(g − z)3
=

1

2

1

z

1

(g − z)2

2z

g − z
= 1 (23)

The solution to this equation is

z =
1

3
g (24)

The voltage corresponding to this point is the pull in voltage given by

Vpi =

√

2 (g − z)2

εS
kz =

√

2
(

g − 1

3
g
)2

εS
k
1

3
g =

√

8

27

kg3

εS
=

√

8

27

kg2

C0

(25)

Notice that the pull in voltage depends on g3/2.
We will now further investigate the pull situation. At equilibrium the total force is

zero, F = 0, and
1

2

εS

(g − z)2
V 2 − kz = 0 (26)

Using Eq. 9 we can rewrite Eq. 26 as

1

2

εS

(g − gu)2
V 2 − kgu = 0

1

2

εS

g2 (1− u)2
V 2 − kgu = 0

1

2

εS

kg3
V 2 = u (1− u)2 (27)

and

y =
1

2

εS

kg3
V 2 = u (1− u)2 (28)

This expression is plotted on Figs. 6 and 7. The maximum of this curve is given by

d

du

(

u (1− u)2
)

= 0

3u2 − 4u+ 1 = 0

which has solution

u =
1

3
(29)
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Figure 6: Plot of Eq. 28. The maximum occurs at u = 1/3.

At the extremum, where the value of the voltage reaches the pull in voltage, V = Vpi,
the value of y is

y =
1

2

εS

kg3
V 2
pi =

1

3
·

(

1−
1

3

)2

=
4

27
= 0.14815 (30)

from which we again obtain the pull in voltage as

1

2

εS

kg3
V 2
pi =

4

27
(31)

Vpi =

√

8

27

kg3

εS
(32)

Fig 7 is another representation of the equilibrium conditions. For z values smaller than
g/3 a stable position can be obtained.

5 Pull out voltage

Once the two plates are pulled together the voltage has to be lowered in order for the
plates to separate again. When the mobile plate touches the fixed plate, the distance
between the two plates is just the thickness, tox, of the insulating layer as illustrated
on Fig. 8. In this situation the capacitance of the system is

C =
εoxS

tox
(33)
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Figure 7: Plot of Eq. 28. The maximum occurs at z = g/3 and below this value a
stable condition is obtained.
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The electrostatic force between the two plates is then

F =
1

2

εoxS

t2ox
V 2 (34)

In order for the two plates to separate again the voltage has to be lowered such that
the force from the spring, Fs = kg, is larger than the electrostatic force. The voltage
where this occurs is the pull out voltage, Vpo given by

1

2

εoxS

t2ox
V 2
po = kg (35)

from which we obtain,

Vpo =

√

2kg

εoxS
tox (36)

Notice, that the pull out voltage is proportional to the thickness of the insulating layer.

Figure 8: At pull in the moving plate touches the fixed pate and the distance between
the two pates is the thickness of the oxide used as an insulation layer.
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6 Hysteresis

We can now identify four regions as illustrated on Fig. 9:

Region 1 Where V < Vpi and as the voltage is increased the gap is reduced until the
pull in voltage is reached

Region 2 For V > Vpi the moving plate is pulled down until it reaches the insulating
oxide

Region 3 When the voltage is reduced the moving plate stays in the pulled down
position for Vpo < V < Vpi

Region 4 Finally, when the voltage is lower than the pull out voltage, V < Vpo, it
returns to the original position.

Thus, this system has a hysteresis behavior.

Figure 9: The system shows a hysteresis behavior depending on the voltages applied.

7 CV curve

The capacitance-voltage curve for a capacitive device is easily measured experimentally
and it is therefore interesting to find an analytical expression that describes how the
capacitance depends on the applied voltage.
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The total force is

F =
1

2

εS

(g − z)2
V 2 − kz

and a stable position has
1

2

εS

(g − z)2
V 2 − kz = 0.

For small deflections where z # g we have that g−z ≈ g so the force balance becomes

1

2

εS

g2
V 2 − kz = 0

and solving for z we find

z =
1

2

εS

kg2
V 2 =

1

2

C0

kg
V 2.

Using that V 2
pi =

8

27

kg2

C0
we have kg = 27

8
C0V 2

pi/g such that

z =
1

2

C0

kg
V 2 =

1

2

C0

27

8
C0V 2

pi/g
V 2 =

4

27
g
V 2

V 2
pi

The capacitance then becomes

C =
C0

1− z/g
≈ C0

(

1 +
z

g

)

= C0

(

1 +
4

27

V 2

V 2
pi

)

. (37)

This expression shows that the CV curve is a parabula with a curvature of 4

27
/V 2

pi. The
expression is, however, only valid for small z/g but this is often true practice. Fig. 7
shows a plot of Eq. 37.
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The CV curve is a parabula.
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8 Problems

Problem 1 Consider a capacitor with plate area of 100×100 µm having a gap distance
of 2 µm. The capacitor has vacuum between the plates. The applied voltage is 50
Volts. Calculate the capacitance, the stored charge, the electric field, the stored
energy and the force between the plates.

Problem 2 Consider a capacitor with plate area of 100×100 µm having a gap distance
of 5 µm. The capacitor has vacuum between the plates. On one plate there is
an oxide (SiO2) of thickness 0.5 µm and the spring constant is k = 20 N/m.
Calculate the pull in and the pull out voltage.
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